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Gold nanoclusters have attracted much attention over the past
two decades due to their wide applications toward biology, catalysis,
and nanotechnology3 Many earlier studies have shown that planar
trigonal raft structures attain the lowest energies for neutral gold

cluster Ay, up ton = 7, whereas a large number of amorphous ' ./ _.,{)
compact structures with almost the same energy are fourm $or B S Jayj)
131¢4°6 Cleveland et al. analyzed three classes of gold nanoclusters [J%»J

with diameter of +2 nm using X-ray powder diffraction and

suggested a truncated-decahedral niétifater, Koga et al. studied 2

larger gold nanoclusters of-B nm and arrived at a similar e

conclusiorP® Haberlen et al. performed scalar relativistic all-electron
density functional theory (DFT) calculations for several highly
ordered clusters with icosahedral, octahedral, and cuboctahedral
symmetries and size up to= 14752 Recently, Li et al. revealed

a new structure of Ag with a remarkably large HOMGLUMO

gap and electron affinity based on their photoelectron spectroscopy
experiments. Their DFT studies algo showed that this new cluster Figure 1. Top view (top) and side view (bottom) of the calculated
adopts a tetrahedral structure that is a fragment of the face—centereqlcosmedralh geometry of Au, using the BP86/LANL2DZ method. The
cubic lattice. Despite these major advances, medium-sized goldAu—Au bond lengths vary between 2.786 and 2.870 A.

clusters observed thus far are all space-filled compact structures,

. . . i 11
and no cagelike structures have been synthesized in laboratory J20/€ 1. Calculated Properties of Auaz versus Aus, Fullerene
Highly symmetrical gold clusters with a hollow cage would be of property Aug (ref 11) Az,
both fundamental and practical interests because of their larger diameter (nm) ~0.9 ~1.1
surface area (compared to their compact-structure counterparts) as symmetry point group Ih Ih
well as their potential applications as golden cages to accommodate HOMO/LUMO gap (eV) 17/28 0409
other atoms or molecules, or as structural motifs to build highly frontier orbital configuration )99 (@)*(hy gy

- e vibrational fregency (cmt)
stable or even possibly magic-number ceskell nanoclustefa® lowest 30/37 12/F
and novel cluster-assembled materfals. highest 145/14% 156/143
As mentioned above, to date, it is still an open question whether E_Oé\(lo (eV) tom (eV) —62-%‘;3 53-57/?/;2-82
: : : inding energy per atom (e . . .
the cagelike gold clusters exist. The closest match of cagelike cluster NICS at center of cage _100° 116/140

is bimetallic icosahedron W@Ag which was first predicted by
Pyykkoand Runebeiand later synthesized by Li et ®IHowever,

aBP86/PBEO valué! ®BP86 value® BP86/B3LYP value.

the pure icosahedral form of Aslis unstable and must be stabilized

by the endohedral W atom. Theoretical studies of gold fullerenes set$® was adopted for the gold atom. The harmonic-frequency
are also scarcéRecently, Johansson et al. predicted, for the first calculations were performed based on the optimized geometries.
time, a highly stable icosahedron 4tfullerene based on DFT  All calculations were performed with the Gaussian03 program
calculations! This |, symmetrical gold fullerene can be constructed packagé’

using the carbon fullereneggas a template. Remarkably, the Au Aug; has a perfecty, structure since it is constructed from the
fullerene exhibits perhaps the largest HOMOUMO gap among carbon fullerene & (with I, symmetry) as a templateggfullerene
medium-sized gold clusters. Moreover, the sAdullerene is has 42 surfaces: 12 pentagons and 30 hexagons. To build the Au
consistent with the 2{ + 1) aromatic rule, introduced by Hirsch  fullerene, we first place an Au atom at the center of each pentagon
and co-workers, and has strong aromaticity (NIGS00)12 A and hexagon of §. We then adjust the AtAu bond length to
recent theoretical study suggested that the,Aullerene cage could obtain an initial icosahedron Ay Last, full geometry optimizations
incorporate up to three Au atoms inside without showing major with DFT methods (without symmetry constraint) give rise to the
structural deformatio®? Except for these previous works, no other final structures (Figure 1). The calculated properties of icosahedral
gold fullerenes have been reported. In this communication, we report Aug, are collected in Table 1. The diameter of icosahedrahAsu
another highly stable and closed-sHghbymmetrical fullerene Au, 1.1 nm, about 0.2 nm larger than the icosahedral,Aullerene.

as shown in Figure 1, based on DFT calculations. Two DFT The Au, cage is composed of 12 vertexes, 30 edges, and 20 carats.
methods were employed, that is, the generalized gradient ap-Each edge has three gold atoms, and each surface has six gold atoms
proximation (GGA) functional BP86 and Becke’s three parameter to form a trigonal-planaiDz, geometry, which has been widely
hybrid functional with the Lee Yang—Parr correlation functional verified as the lowest energy isomer of fay the DFT, MP2, and
B3LYP.1> The effective core potential (ECP) of LANL2DZ basis even the CCSD(T) calculatioris!® The Au—Au bond lengths are
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2.819 and 2.920 A with B3LYP and 2.786 and 2.870 A with BP86 that can hold up to 13 Au atoms (which gives sAicosahedral
calculation. These calculated bond lengths are slightly shorter thancompact structuféd as well as a larger HOMOLUMO gap than

the corresponding bond lengths calculated from the local-density compact counterparts. Unlike the known gold fullereneAthe
approximation (2.89 A) and GGA (2.97 Ajput are in accordance  Auj; fullerene does not satisfy theN@ 1)2 aromatic rule. With

with the results from recent density functional studies for clusters their apparently dissimilar chemical characteristics, the two gold
such as W@Aw, Auy, and Au.”%1 The Aug, fullerene has a fullerenes can be used to accommodate other atoms or molecules
modest energy gap between the highest occupied molecular orbitafor the purpose of studying fundamental chemistry.

(HOMO) and the lowest unoccupied molecular orbital (LUMO),
that is, 0.4 eV with BP86 and 0.9 eV with B3LYP calculation.
Moreover, the HOMO is 5-fold and the LUMO is 4-fold degenerate.
Note that these calculated HOM@Q.UMO gaps are much smaller
than the icosahedral Ap (BP86: 1.7 eV, PBEO: 2.5 eV,
indicating that the Ap fullerene is not as chemically stable as the
icosahedral Agp, even though both fullerene structures have the
same binding energy per atom (Table 1). In addition, unlike the  Supporting Information Available: Data of Cartesian coordinates,
Aug, fullerene, the Ay, fullerene does not satisfy the @+ 1)? harmonic vibrational frequencies, electronic energies fapAand the
aromatic rulé? In particular, the nucleus-independent chemical shift complete ref 17. This material is available free of charge via the Internet
(NICS) value at the center of Apexhibits a large positive number  at http://pubs.acs.org.

(Table 1). Although the NICS value is generally considered as an
index to measure the aromaticity of fullerene cages, we note that References

recent works of Aihara et al. show that the NICS value at the cage (1) (a) Schwerdtfeger, Rngew. Chem., Int. EQ003 42, 1892. (b) Daniel,
center may not always correlate with the aromaticity (e.g., far C M.-C.; Astruc, D.Chem. Re. 2004 104, 293. (c) PyykKo P. Angew.

. Chem., Int. EA2004 43, 4412.
fullerene)® Thus, the large positive NICS value at the center of  (2) Schwarz, HAngew. Chem., Int. EQ003 42, 4442,
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